The flexural stiffness of superficial neuromasts in the zebrafish (Danio rerio) lateral line.

نویسندگان

  • Matthew J McHenry
  • Sietse M van Netten
چکیده

Superficial neuromasts are structures that detect water flow on the surface of the body of fish and amphibians. As a component of the lateral line system, these receptors are distributed along the body, where they sense flow patterns that mediate a wide variety of behaviors. Their ability to detect flow is governed by their structural properties, yet the micromechanics of superficial neuromasts are not well understood. The aim of this study was to examine these mechanics in zebrafish (Danio rerio) larvae by measuring the flexural stiffness of individual neuromasts. Each neuromast possesses a gelatinous cupula that is anchored to hair cells by kinocilia. Using quasi-static bending tests of the proximal region of the cupula, we found that flexural stiffness is proportional to the number of hair cells, and consequently the number of kinocilia, within a neuromast. From this relationship, the flexural stiffness of an individual kinocilium was found to be 2.4 x 10(-20) N m2. Using this value, we estimate that the 11 kinocilia in an average cupula generate more than four-fifths of the total flexural stiffness in the proximal region. The relatively minor contribution of the cupular matrix may be attributed to its highly compliant material composition (Young's modulus of approximately 21 Pa). The distal tip of the cupula is entirely composed of this material and is consequently predicted to be at least an order of magnitude more flexible than the proximal region. These findings suggest that the transduction of flow by a superficial neuromast depends on structural dynamics that are dominated by the number and height of kinocilia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio).

The lateral line system of fish and amphibians detects water flow with receptors on the surface of the body. Although differences in the shape of these receptors, called neuromasts, are known to influence their mechanics, it is unclear how neuromast morphology affects the sensitivity of the lateral line system. We examined the functional consequences of morphological variation by measuring the ...

متن کامل

Development of the posterior lateral line system in Thunnus thynnus, the Atlantic blue-fin tuna, and in its close relative Sarda sarda.

The lateral line system of amphibians and fish comprises a large number of individual mechanosensory organs, the neuromasts, and their sensory neurons. The pattern of neuromasts varies markedly between species, yet the embryonic pattern is highly conserved from the relatively basal zebrafish, Danio rerio, to more derived species. Here we examine in more detail the development of the posterior l...

متن کامل

Heterogeneity and dynamics of lateral line afferent innervation during development in zebrafish (Danio rerio).

The lateral line system of larval zebrafish is emerging as a model to study a range of topics in neurobiology, from hair cell regeneration to sensory processing. However, despite numerous studies detailing the patterning and development of lateral line neuromasts, little is known about the organization of their connections to afferent neurons and targets in the hindbrain. We found that as fish ...

متن کامل

Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish.

The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish (Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical deflections of individual superficial neuromasts. We used two types of stimulation protocols. Fi...

متن کامل

Frequency response properties of primary afferent neurons in the posterior lateral line system of 1 larval zebrafish

19 The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the 20 physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish 21 (Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical 22 deflections of individual superficial neuromasts. We used two types of stimulation p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2007